Contents

About th	ne Editor	$x\nu$	•
List of Co	ontributo	rs	xvii
Preface	xxiii		

Part II Interacti	on of Other	· Components	with Ph	ytohormones	1
-------------------	-------------	--------------	---------	-------------	---

1	Interaction between Hormone and Redox Signaling in Plants:
	Divergent Pathways and Convergent Roles 3
	Srivastava AK, Redij T, Sharma B, and Suprasanna P
1.1	Introduction 3
1.2	Redox-Hormone Crosstalk in Plants 4
1.3	Auxin 4
1.4	Abscisic Acid 9
1.5	Ethylene 11
1.6	Jasmonic Acid 11
1.7	Salicylic Acid 12
1.8	Brassinosteroids 14
1.9	Conclusion and Future Perspectives 15
	References 15
2	Redox Regulatory Networks in Response to Biotic Stress in Plants:
	A New Insight Through Chickpea-Fusarium Interplay 23
	Anirban Bhar, Sumanti Gupta, Moniya Chatterjee, and Sampa Das
2.1	Introduction 23
2.2	Production and Scavenging of ROS: The Balance versus Perturbations 24
2.2.1	NADPH Oxidase, the Biological ROS Factory 24
2.2.2	Detoxification of ROS 25
2.3	Role of ROS in Plants: Ease and Disease 28
2.4	Reactive Oxygen Species Networks in Plants 28
2.4.1	Oxidative Sensors: Decoding of ROS Language 28
2.4.2	The Role of ROS in Cell Wall Fortification 29
2.4.3	The MAP Kinase Signaling Cascade: Relation to the Cellular Redox State 32

ROS, an Inducer in Plant Systemic Responses 33

2.4.4

vi	Contents	
	2.5 2.6	ROS Signaling in Chickpea-Fusarium Interplay 34 Concluding Remarks 36 Acknowledgments 37 References 37
	3	Ca ²⁺ , The Miracle Molecule in Plant Hormone Signaling During Abiotic Stress 45 Swatismita Dhar Ray
	3.1	Introduction 45
	3.2	Intricacies of Hormonal Signaling in Abiotic Stress 46
	3.3	Ca ²⁺ Regulated Hormonal Signaling 50
	3.3.1	Calcium-Dependent Protein Kinase (CDPK/CPK) 50
	3.3.2	Calcineurin B-Like Protein (CBL)-CBL-Interacting Protein Kinase (CIPK) 62
	3.3.3	Ca ²⁺ Binding Protein Calmodulin (CAM), CAM-Like Protein (CML) and CAM-Binding Transcription Activator (CAMTA) 64
	3.3.4	Ca ²⁺ /Calmodulin-Dependent Protein Kinase (CCaMK) 65
	3.3.5	Ca ²⁺ /H ⁺ Antiporter (CAX) 66
	3.3.6	Ca ²⁺ ATPase (ACA) 66
	3.4	Calreticulin (CRT) 67
	3.5	Conclusion 67
		Acknowledgment 68
		Abbreviations 68
		References 69
	4	Phosphoglycerolipid Signaling in Response to Hormones Under Stress 91
		Igor Pokotylo, Martin Janda, Tetiana Kalachova, Alain Zachowski, and Eric Ruelland
	4.1 4.1.1	Main Players in Phosphoglycerolipid Signaling Machinery 91 Phosphoglycerolipid Signaling Pathways 91
	4.1.1	Which Molecules Act as Mediators? 93
	4.1.2.1	Targets of Phosphatidic Acid 93
	4.1.2.2	Phosphoinositides 94
	4.1.2.3	Diacylglycerol 96
	4.1.2.4	Phosphorylated Inositols 96
	4.1.2.5	Lysophosphoglycerolipids and Free Fatty Acids 96
	4.2	Lipid Signaling, An Important Component of Plant Stress Responses 97
	4.2.1	The Effect of Abiotic or Biotic Stresses on the Expression of Genes Encoding
		Enzymes of Lipid Signaling Machinery 97
	4.2.2	The Effects of Abiotic Stresses on the Components of Lipid Signaling
		Machinery 99
	4.2.2.1	Salt and Osmotic Stresses 99
	4.2.2.2	Drought stress 100
	4.2.2.3	Temperature Stress 101
	4.2.2.4	Nutrient Deficiency and Toxic Metals 102
	4.2.2.4 4.2.3	Effects of Biotic Stresses on Components of Lipid Signaling Machinery 102
	4.2.2.4	•

4.3.2	Salicylic Acid 107
4.3.3	Jasmonates 108
4.3.4	Ethylene 109
4.3.5	Auxins 109
4.3.6	Brassinosteroids 110
4.4	Stresses Can Affect Responses to Hormones by Altering Phosphoglycerolipid
1.1	Machinery 111
4.5	Conclusion 113
T.0	Acknowledgments 113
	References 113
	Neterines 110
5	The Role of the Plant Cytoskeleton in Phytohormone Signaling
_	under Abiotic and Biotic Stresses 127
	Yaroslav B. Blume, Yuliya A. Krasylenko, and Alla I. Yemets
5.1	Introduction 127
5.2	Phytohormone-Mediated Perception of Abiotic Factors via the
J.2	Cytoskeleton 131
5.2.1	Osmotic Stress and its Main Signaling Molecules Abscisic Acid and Ethylene
9.2.1	Interplay with the Cytoskeleton 131
5.2.1.1	Osmotic Stress 131
	Osmotic Stress and Cytoskeleton 132
5.2.1.2	ABA and MTs 136
5.2.1.3	
5.2.1.5	Ethylene and MTs 139
5.2.1.6	Ethylene and AFs 141
5.2.2	Microgravity and Mechanical Alterations Signal Transduction via Auxin and
. 1	Brassinosteroids 142
5.2.2.1	Gravity 142
5.2.2.2	Mechanosensing 142
5.2.2.3	MTs as a Moving Force of Gravity Response 143
5.2.2.4	AFs and Gravity Response 143
5.2.2.5	Auxins as a Gravity Signal 144
5.2.2.6	Auxins and NO Interplay 144
5.2.2.7	Auxins and cGMP 145
5.2.2.8	Auxins and MTs 145
5.2.2.9	
5.2.2.10	
5.2.2.11	Brassinosteroids and Cytoskeleton 150
5.2.3	Light Causes Cytoskeleton Rearrangement Mediated by Gibberellins 152
5.2.4	Cytoskeleton and Phytohormones as the Players of Common Signaling
	Cascades Under Extreme Temperatures 154
5.2.4.1	Cold and Phytohormones 155
5.2.4.2	Cold, MTs, and ABA 156
5.2.4.3	Cold, ABA, and AFs 158
5.2.4.4	Heat Shock Stress 158
5.2.4.5	Heat Shock-Induced Phytohormonal Imbalance 159
5.2.4.6	Hydrogen Peroxide (H_2O_2) and Nitric Oxide (NO) 160
	7 U V V V V V V V V V V V V V V V V V V

viii	Contents	
	5.2.4.7	ROS 160
	5.2.4.8	Heat and the Cytoskeleton 161
	5.3	Cytoskeleton Regulation in Plant Interactions with Pathogens/Symbionts: Jasmonic and Salicylic Acids, and Strigolactones 162
	5.3.1	Jasmonic Acid 164
	5.3.2	Salicylic Acid 166
	5.3.3	Strigolactones 167
	5.4	Conclusions and Future Perspectives 169
		Acknowledgments 169
		Abbreviations 169
		References 170
	6	Proteins in Phytohormone Signaling Pathways for Abiotic Stress in Plants 187
		Sasikiran Reddy Sangireddy, Zhujia Ye, Sarabjit Bhatti, Xiao Bo Pei,
		Muhammad Younas Khan Barozai, Theodore Thannhauser, and Suping Zhou
	6.1	Introduction 187
	6.2	Metabolic Pathways of Phytohormones and Stress-Induced Protein
		Expression Affecting their Biosynthesis Process 187
	6.3	Proteins for Intra- and Inter-Cellular Transport of Phytohormones 190
	6.4	Hormone Signaling Systems, Hormone Crosstalk, and Stress
		Responses 191
	6.5	The Application of Proteomics in the Identification of Hormone Signaling
		Pathways 193
	6.6	Conclusion and Prospective 194
		References 194
	7	Perturbation and Disruption of Plant Hormone Signaling by Organic
		Xenobiotic Pollution 199
		Anne-Antonella Serra, Diana Alberto, Fanny Ramel, Gwenola Gouesbet, Cécile Sulmon, and Ivan Couée
	7.1	Introduction 199
	7.1	Plant-Hormone-Interfering Naturally-Occurring Organic Compounds Play
	1,4	Important Roles in the Chemical Ecology of Plants 204
	7.3	Transcriptome Profiling Reveals the Wide-Ranging Molecular Effects of
	, .0	Plant-Organic Xenobiotic Interactions 205
	7.4	The Wide-Ranging Molecular Effects of Plant-Organic Xenobiotic
		Interactions Emphasize the Involvement of Regulatory Processes 206
	7.5	Specifically Designed Organic Xenobiotics Directly Interact with Plant
		Hormone Systems 209
	7.6	Organic Xenobiotics Can Cause Biological Effects that Interfere with Plant
		Hormone Dynamics and Signaling 210
	7.7	The Diversity of Organic Xenobiotic Occurrences in Environmental
		Pollutions Can Induce Plant Hormone Perturbations in Non-Target Plant
		Communities 212
	7.8	Conclusions and Perspectives 214
		Acknowledgments 214

Abbreviatio	ns	214
References	21	4

8	Plant Hormone Signaling Mediates Plant Growth Plasticity in Response to Metal Stress 223 Xiangpei Kong, Huiyu Tian, and Zhaojun Ding Introduction 223
8.2	Cadmium (Cd) 224
8.3	Aluminum (Al) 226
8.4	Other Metals 228
	Acknowledgments 229
	References 229
	Part III Transcriptional Regulators of Phytohormones 237
9	Transcription Factors and Hormone-Mediated Mechanisms Regulate
	Stomata Development and Responses Under Abiotic Stresses: An
	Overview 239
	Marco Landi, Alice Basile, Marco Fambrini, and Claudio Pugliesi
9.1	Introduction 239
9.2	Stomata Development 240
9.2.1	The Transition from a Non-Differentiated Cell to GC Pair 240
9.2.2	The Positive Regulators from the Transition of a Non-Differentiated Cell to a
	GC Pair 241
9.2.3	Genetic Control of Stomatal Patterning 245
9.2.4	Additional Genes Involved in Stomatal Differentiation and Function 248
9.2.5	Regulation of Stomata Differentiation and Patterning via
	Phytohormones 250
9.2.6	Regulation of Stomata Differentiation and Patterning via Environmental
	Cues 252
9.3	Stomatal Response to Drought/Salinity and Waterlogging/Anoxia
	Constraints 253
9.3.1	Root-to-Shoot Communication 253
9.3.2	The Harsh Conditions Experienced by Plants in Mediterranean
	Environment: The Stomatal Responses to Drought and Salinity 253
9.3.2.1	Transcription Factors and Hormones Mediate Stomatal Response in
	Drought and Salinity Stresses 254

Convergence of Stress-Induced Hormone Signaling Pathways on a 10 **Transcriptional Co-Factor** 285 Nidhi Dwivedi, Vinay Kumar, and Jitendra K. Thakur

258

Waterlogging and Oxygen Shortage

Conclusions and Perspectives 262

Acknowledgments 264

References 264

Introduction 285 10.1

9.3.3

9.4

×	Contents	
	10.2	Mediator Complex 286
	10.3	Role of Mediator in Transcription 289
	10.4	Flexibility of Mediator 290
	10.5	Phytohormone Signaling Under Stress 291
	10.6	Effect of Hormone and Stress on the Expression of Mediator Subunit
		Genes 293
	10.7	Involvement of Specific Mediator Subunits in Hormone Signaling and Stress
		Response 295
	10.7.1	MED5 295
	10.7.2	MED8 296
	10.7.3	MED14 and MED2 297
	10.7.4	MED15 297
	10.7.5	MED16 298
	10.7.6	MED17, MED18, and MED20 298
	10.7.7	MED18 299
	10.7.8	MED19 299
	10.7.9	MED21 300
	10.7.10	MED25 301
	10.7.11	MED34 302
	10.7.12	MED37 302
	10.7.13	CDK8 302
	10.8	Convergence of Signaling Pathways on the Mediator Complex 303
	10.9	Conclusion 304
		Acknowledgment 305
		References 305
	11	Micro-Regulators of Hormones and Stress 319
		Neha Sharma, Deepti Mittal, and Neeti-Sanan Mishra
	11.1	Introduction 319
	11.2	Plant microRNAs 320
	11.2.1	Road to Discovery 320
	11.2.2	miR Biogenesis 321
	11.2.3	Genomic Organization of Plant miRs 323
	11.2.4	Mode of Action and Target Recognition 324
	11.3	Role of miRs in Hormone Signaling 325
	11.3.1	Auxins 325
	11.3.2	Gibberellins 328
	11.3.3	Cytokinins 329
	11.3.4	Ethylene 330
	11.3.5	Abscisic Acid (ABA) 331
	11.4	miR Mediated Regulation of Abiotic Stress 332
	11.4.1	Water Stress 332
	11.4.2	Temperature 333
	11.4.3	Nutrient Deprivation 334
	11.4.4	Salt Stress 334 Conclusions and Perspectives 335
	11.5	Conclusions and Perspectives 335 References 336

Part IV Involvement of Multiple Phytohormones in Stress Responses 353

12	Signal Transduction Components in Guard Cells During Stomatal Closure by Plant Hormones and Microbial Elicitors 355
	Srinivas Agurla, Gunja Gayatri, and Agepati S. Raghavendra
12.1	Introduction 355
12.2	Compounds or Signals that Regulate Stomatal Function 356
12.2.1	Plant Hormones 356
12.2.1.1	Abscisic Acid 357
12.2.1.2	Auxins 357
12.2.1.3	Cytokinins 357
12.2.1.4	Ethylene 357
12.2.1.5	Brassinosteroids 358
12.2.1.6	Salicylic Acid and Acetyl Salicylic Acid 358
12.3	Guard Cell Turgor and Stomatal Closure: Ion Fluxes as the Basis 360
12.4	Experimental Approaches to Studying Signaling Components 360
12.5	Sensing Systems in Guard Cells 361
12.5.1	ABA receptors 361
12.5.2	MJ Receptors 362
12.5.3	Calcium Receptors 362
12.5.4	Others 362
12.6	Signaling Components in Guard Cells 363
12.6.1	Reactive Oxygen Species (ROS) 363
12.6.2	Nitric Oxide (NO) 363
12.6.3	Calcium 368
12.6.4	Cytosolic pH 370
12.6.5	Protein Kinases and Protein Phosphatases 370
12.6.6	G-Proteins 370
12.6.7	Phospholipids and Sphingolipids 371
12.6.8	Cation and Anion Channels 371
12.6.9	Cytoskeleton Elements 371
12.7	Validation with <i>Arabidopsis</i> Mutants 372
12.8	Concluding Remarks 374
	Acknowledgments 375
	References 375
13	Plants' Defense and Survival Strategies versus Pathogens'
	Anti-Defense and Infection Capabilities: The Hormone-Based
	Mechanisms 389
	Pranav Pankaj Sahu, Namisha Sharma, and Manoj Prasad
13.1	Introduction 389
13.2	Modulation of Hormone Signaling Networks by Pathogens for
	Virulence 390
13 2 1	Alteration of Hormone Signaling and Associated Components by

Bacteria 390

xii	Contents	
	13.2.2	Alteration of Hormone Signaling and Associated Components During Plant-Virus Interaction 395
	13.2.3	Alteration of Hormone Signaling and Associated Components During Fungal Infection 398
	13.3	Alteration of the Hormone Signaling Network by Plants for Disease Resistance 400
	13.3.1	Salicylic Acid: A Key Regulatory Hormone in the Resistance Signaling Network 400
	13.3.2	The Emerging Role of Auxin as a Defense Hormone 402
	13.3.3	Changing Trends of ABA Signaling: A Positive Regulator of Defense
		Response During Pathogen Attack 402
	13.3.4	JA/ET Pathway Plays Both Synergistically and Antagonistically with the
		Other Phytohormones 403
	13.4	Conclusions and Future Perspectives 405
		Acknowledgment 405
		References 405
	14	Exploring Crossroads Between Seed Development and Stress
		Response 415
	1.4.1	Sushma Naithani, Hiro Nonogaki, and Pankaj Jaiswal
	14.1	Introduction 415
	14.1.1	Seed Development 415
	14.1.1.1	, , , , , , , , , , , , , , , , , , , ,
	14.1.1.2	Reserve Accumulation in Seeds 417
	14.1.1.3	Seed Maturation and Dormancy 418 Seed Germination 419
	14.1.2	
	14.2	Genes, Proteins, and Pathways Involved in Seed Development 419
	14.2.1 $14.2.2$	Transcription Activators, Repressors, Others, and Regulatory Proteins 419 microRNAs (miRNA) 422
	14.2.3	microRNAs (miRNA) 422 Metabolic Pathways and Associated Genes 422
	14.2.3.1	Hormone Metabolism 422
	14.2.3.2	Carbohydrate Metabolism and Starch Deposition 423
	14.2.3.3	Proteins and Enzymes 423
	14.3	Genes at the Intersection of Seed Development and Stress Response 424
	14.4	Exploring Bioinformatics Resources 425
	14.4.1	Visualization of Synteny Across Plant Species 432
	14.4.2	Gene Phylogeny 435
	14.4.3	Genetic Marker Resource 437
	14.4.4	Gene Expression Data Analysis 437
	14.5	Insights and Future Prospects 441
		Acknowledgments 444
		References 444

15 Role of Multiple Phytohormones in Regulating Stress Responses in Plants 455 Diwaker Tripathi, Bal Krishna Chand Thakuri, and Dhirendra Kumar

15.1 Introduction 455

15.2	Biotic Stress 456
15.2.1	SA Biosynthesis and Modifications 456
15.2.2	SA and MAP Kinases in Biotic Stress Signaling 457
15.2.3	SA Signaling through Transcription Factors 458
15.2.4	SA Mediated Signaling through SA-Binding Proteins 458
15.2.5	Hormones Affecting Stomatal Aperture During Biotic Stress Response 461
15.3	Role of Hormones in Abiotic Stress 461
15.3.1	Role of Salicylic Acid in Abiotic Stress 461
15.3.2	Role of Abscisic Acid in Abiotic Stress 463
15.3.3	Role of Jasmonic Acid in Abiotic Stress 464
15.3.4	Role of Ethylene (ET) in Abiotic Stress 465
15.3.5	Role of Auxin in Abiotic Stress 465
15.3.6	Role of Gibberellins in Abiotic Stress 465
15.4	Interaction of SA with other Stress Hormones 466
15.5	SA/ABA Antagonism 467
15.6	Future Perspective and Challenges 467
	Acknowledgments 468
	References 468
16	Phytohormones and Drought Stress: Plant Responses to
	Transcriptional Regulation 477
	Neha Pandey, Zahra Iqbal, Bhoopendra K. Pandey, and Samir V. Sawant
16.1	Introduction 477
16.2	Phytohormones: Role in Plant Growth and Development 479
16.2.1	Plant Growth and Hormone Signaling 479
16.2.2	Role of Phytohormones in Plant Development Under Stress Conditions 479
16.2.3	Crosstalk and Combinatorial Effect of Phytohormones in Various
	Stresses 480
16.3	Plant Hormonal Response to Stress Conditions 481
16.3.1	Hormone Biosynthesis by Abiotic Stress 481
16.3.2	Hormonal Regulation of Stress Responsive Genes 481
16.3.3	ABA-Responsive Gene Expression 482
16.3.4	Interaction Between ABA and Other Stress Hormones in Abiotic Stress
	Responses 485
16.3.5	Auxin Responsive Gene Expression and Stress Response 485
16.3.6	Cytokinin and its Role in Stress Response 486
16.3.7	An Insight into the Role of GA and SA in Abiotic Stress 486
16.3.8	Interplay of Phytohormones on Plants under Stress Conditions 487
16.4	Hormonal Mediated Transcriptional Response to Stress Conditions 488
16.4.1	Hormonal Conjugation in Regulation of Gene Expression in Abiotic Stress 488
16.4.2	Regulation of Stress Responsive Transcription Factors by Phytohormones 488
16.4.3	The Role of ABA in Regulating Stress Induced Transcription Factors 489
16.5	Phytohormone Mediated Signaling Response Under Stress Conditions 490
16.5.1	Signal Transduction of Phytohormones Under Abiotic Stress 490

xiv	Contents	
	16.5.2	Interaction Between Hormone Biosynthetic Pathways and Signal Transduction Pathways 490
	16.5.3	Regulation of Kinases and Phosphatase by Hormones 491
	16.5.4	Role of Secondary Messengers in Hormone Signaling 491
	16.6	Significance of Phytohormones in Plant Genetic Engineering 493
	16.7	Conclusion 493
	10.7	References 493
	17	Mechanisms of Hormone Signaling in Plants Under Abiotic and
		Biotic Stresses 505
		Jogeswar Panigrahi, and Gyana Ranjan Rout
	17.1	Introduction 505
	17.2	Role of Hormones in Plant Growth and Development 506
	17.3	Common Tenets in Hormone Signaling in Plants Under Abiotic and Biotic Stress 507
	17.4	Role of ROS in Hormone Signaling Pathways 509
	17.5	Role of MAPK in Hormone Signaling Pathways 511
	17.6	Role of Jasmonic Acid and Cytokinin on Hormone Signaling Pathways 515
	17.7	Role of Brassinosteroids on Hormone Signaling Pathways 516
	17.8	The Crosstalk of Hormones and Hormone-Like Substances in Plants under
	17.0	Abiotic and Biotic Stress Responses 518
	17.9	Conclusion 520
	17.5	References 521
	10	Town and American desired by the second Court Date describits and
	18	Transgenic Approaches to Improve Crop Productivity via
		Phytohormonal Research: A Focus on the Mechanisms of
		Phytohormone Action 533
		Brijesh Gupta, Rohit Joshi, Ashwani Pareek, and Sneh L. Singla-Pareek
	18.1	Introduction 533
	18.2	Phytohormones and Crop Yield: Approaches and Vision for Genetic
	1001	Improvement 535
	18.2.1	Cytokinins: Roles, Biosynthesis, and Signaling 535
	18.2.2	Gibberellins: Roles, Biosynthesis, and Signaling 537
	18.2.3	Brassinosteroids: Roles, Biosynthesis, and Signaling 539
	18.2.4	Auxins: Roles, Biosynthesis, and Signaling 540
	18.3	Manipulation of Phytohormone Levels in Transgenic Plants to Improve Crop
	1001	Productivity 541
	18.3.1	Cytokinins and Crop Yield 541
	18.3.2	Gibberellins and Crop Yield 545
	18.3.3	Brassinosteroids and Crop Yield 547
	18.3.4	Auxins and Crop Yield 549
	18.4	Phytohormonal Crosstalks to Enhance Crop Productivity 550
	18.5	Conclusion and Future Directions 552
		Acknowledgments 553
		References 554